
	 	 	 	

ForsaOS 2.0 host level performance analysis

Rachel Wooten Stevenson and Andrei Khurshudov

Abstract
In this document, we summarize the input-output performance of a server using the new
ForsaOS software operating system for IMC (In-Memory Computing). The results shown
highlight that the software enables exceptionally high throughput for both read and write
operations while simultaneously maintaining very low latencies. Performance is quoted
for the host level only, rather than for virtual machines.

Introduction to In-Memory Computing
In-memory computing (IMC) represents a new paradigm for maximizing modern
computer system performance in which system RAM is used for both system memory
and data storage. While there have previously been some specialized applications which
have boosted their operational speed by being run in memory while still utilizing
traditional solid-state drives or hard disks as additional storage, ForsaOS software
instead bypasses the need for slower storage entirely by keeping all of the system’s data
in memory at all times. The complete switch to In-Memory Computing grants an
appreciable boost to speed for any data-intensive processes.

Figure 1. Diagram showing the memory hierarchy of a conventional computer (left) and a computer using
ForsaOS (right). Formulus Black software enables the user to utilize RAM as a persistent storage medium,
significantly improving performance over systems relying on solid state drives or hard disks.

CPU
register

Cache

Physical RAM

Virtual Memory
(swap)

Disk
Drive SSD

Flash
Other
Media

CPU
register

Cache

Physical RAM
memory

ForsaOS

RAM-based
Storage

	 	 	 	

Test environment and tools

Tests listed here for ForsaOS were performed on the AIC-made server with 2 Intel Xeon
Platinum 8160M CPUs (2.10 GHz) with 24 cores per socket at host level.

System configuration
Processor 2 Intel Xeon Platinum 8160M CPUs (2.10 GHz)
Cores 24 cores per CPU socket
Graphics Card ASPEED Graphics Family, version 4
Memory 187GB RAM as system memory, declared from 12x2x64GB

DDR4 Samsung 2400 MT/s DIMMs (1.5 TB total installed
memory);

OS ForsaOS 2.0
Storage Drive (for host-
level installation)

Samsung SSD 960 EVO 250GB

LEM size 500 GB

We used Flexible I/O Tester, or FIO, to measure system performance. FIO is a
straightforward synthetic workload generator that characterizes fundamental disk read
and write operations (sequential and random read and write, or mixed jobs) under a
variety of settings (e.g. queue depth, block size, multiple disks, etc.) in order to mimic
various types of workloads typically requested of the disk. In these tests, a ForsaOS
‘LEM’ (logical extension of memory) is used as the block device (disk) by the host.

Each individual read and write test point was taken over 30 minutes of sustained I/O
operations, and for each trial, the LEM was completely overwritten multiple times1. This
methodology was used to ensure accuracy of the latency measurements as well as to
ensure that the LEMs were completely overwritten multiple times in each test. Prior to
each new run with a different block size or a new LEM, the 500GB LEM was
preconditioned with an FIO write operation of the same block size to fill the LEM.

Single-job results

																																																								
1	Example script:
fio --filename=drive_location --direct=1 –numa_cpu_nodes=0 --cpus_allowed_policy=split --nice=-19
 --readwrite=read --refill_buffers --norandommap --randrepeat=0 --ioengine=libaio bs=4K --iodepth=1
 --numjobs=1 --runtime=1800 --time_based --name=jobname --output=filename
	

	 	 	 	
In this set of tests, we examine performance with only single-job tasks (FIO parameter
numjobs=1) as a function of I/O type for various block sizes. We show only the results
for queue depth 1 for brevity, but also for a few more practical reasons.

For conventional solid-state drives (SSDs), increasing the queue depth will typically
increase the throughput until the system reaches a maximum value, but at the
unfortunate cost of significantly increasing the latency. However, we discovered that
our system typically performed best for tasks with a queue-depth of one, while
simultaneously maintaining the ultra-low latencies typical of short queues.

Rather than report only our peak performance numbers, we are publishing the
bandwidth, total IOPS and latencies of the same trials in order to show that achieving
ForsaOS peak output does not require sacrificing ultra-low latency. Throughputs are
recorded in megabytes per second (MB/s); the latencies shown are the total average
latencies (where total latency is the sum of submission latency and completion latency2)
and are given in microseconds (µs). The results are shown below for two typical block
sizes: small (4 KB) and medium-large (128 KB).

4 KB Block size results, Queue depth = 1, Numjobs = 1

I/O task Bandwidth, MB/s IOPS Avg. Total Latency, µs
Sequential Read 2,073 506,000 1.8
Random Read 2,002 489,000 1.9
Sequential Write 1,177 294,126 2.7
Random Write 1,104 276,038 2.9

128 KB Block size results, Queue depth = 1, Numjobs = 1

I/O task Bandwidth, MB/s IOPS Avg. Total Latency, µs
Sequential Read 7,184 54,800 18.1
Random Read 7,298 55,700 17.8
Sequential Write 2,059 16,089 45.1
Random Write 2,071 16,179 45.1

																																																								
2	In	the	table	we	report	the	average	total	latencies,	which	is	the	average	of	the	total	time	from	FIO	initiating	an	I/O	
operation	to	the	completion	of	the	I/O	operation.			The	average	completion	latency	(defined	as	the	average	time	
that	passes	between	submission	to	the	kernel	and	when	the	IO	completes)	does	not	vary	as	strongly	as	the	
submission	latency	in	this	system	as	block	size	increases.		For	example,	for	single	threaded	sequential	reads,	the	
total	average	latencies	are	1.8µs	for	4K	blocks,	and	10	times	slower	for	128K	blocks;	in	contrast,	the	average	
completion	latencies	for	single	threaded	sequential	reads	are	314ns	(nanoseconds)	for	4K	blocks	and	only	635ns	
for	128K,	or	only	roughly	2	times	slower.		For	ForsaOS,	submission	times	dominate,	especially	for	large	blocks;	this	
is	not	true	for	normal	SSDs,	where	completion	times	that	typically	dominate	for	larger	block	sizes.	

	 	 	 	

Unlike in many systems, our peak single-job 4 KB block IOPS and minimum latency were
both achieved in the same trial (sequential reads, queue depth = 1).

It is worth noting that in ForsaOS, sequential and random read operations are
substantially faster than write tasks. This is because ForsaOS’s write performance is
impacted by its built-in data reduction algorithm, which allows the user to effectively
expand (aka “amplify”) physical RAM and thereby reduce system TCO (Total Cost
of Ownership). Considering the high cost of RAM, this makes it easier for the user to
enter the realm of IMC. This data-reduction algorithm also provides a layer of intrinsic
data-protection for the user that requires additional overhead to incorporate for many
conventional SSDs.

Multi-threading results

For this set of tests, we increased the number of read/write operations being performed
on a single LEM from 1 in the previous data to 32 (FIO parameter numjobs=32). As with
the single-job tasks above, we report the full results for queue depth =1 for both 4 KB
and 128 KB block operations3.

4 KB Block size results, Queue depth = 1, Numjobs = 32

I/O task Bandwidth, MB/s IOPS Avg. Latency, µs
Sequential Read 41,446 10,121,000 2.9
Random Read 36,507 8,922,000 3.3
Sequential Write 24,696 6,174,015 4.2
Random Write 22,870 5,717,675 4.7

128 KB Block size results, Queue depth = 1, Numjobs = 32

I/O task Bandwidth, MB/s IOPS Avg. Latency, µs
Sequential Read 168,557 1,282,400 24.9
Random Read 78,276 593,500 56.5
Sequential Write 49,177 384,198 59.2
Random Write 44,345 346,450 69.3
																																																								
3	As	for	single	jobs,	in	ForsaOS	systems,	the	submission	time	dominates	the	total	average	latency,	especially	for	
larger	blocks.		For	example,	for	32	job	sequential	reads,	the	average	completion	latency	is	574ns	for	4K	blocks	and	
still	only	634	ns	for	128K	blocks.		In	both	cases,	the	submission	latency	completely	dominates	the	total	latency:	on	
average,	less	than	20%	of	the	total	latency	time	is	spent	in	the	completion	step	for	4K	blocks	with	32	jobs,	but	less	
than	3%	of	the	total	latency	is	spent	in	the	completion	step	for	128K	blocks	with	32	jobs.		

	 	 	 	

ForsaOS’s exceptional performance in multi-threaded jobs is particularly clear when
comparing plots of throughput, IOPS, and latency versus the total number of parallel I/O
jobs to the same LEM. As can be seen in the plots below, FIO read/write performance
on this system is not saturated yet with 32 parallel jobs. Especially noteworthy is that
increasing from 1 to 8 jobs increases the 4K IOPS by nearly 7-fold while leaving the
average latency nearly completely unaffected. But even increasing the total number of
jobs up to 32 simultaneous reads/writes does not double the latency.

4 KB Block size performance versus number of jobs:

Figure 1. 4 KB Block size throughput in MB/s versus the number of parallel jobs for sequential and random
read and write tasks performed on a single LEM. The highest measured value shown on this plot is for
sequential reads at greater than 40 GB/s. Queue depth = 1 for all results shown. Higher bandwidth is
better.

0

10000

20000

30000

40000

50000

0 5 10 15 20 25 30 35

Ba
nd

w
id
th
	M

B/
s

Number	of	Jobs

Throughput	vs	number	of	jobs

Seq.	Read Seq.	Write Rand.	Read Rand.	Write

	 	 	 	

Figure 2. 4 KB Block size IOPS versus the number of parallel jobs for sequential and random read and
write tasks performed on a single LEM. For sequential reads, the highest IOPS measured for 4K reads is
greater than 10 million. Queue depth = 1 for all results shown. Higher IOPS is better.

Figure 2. 4 KB Block size latency versus the number of parallel jobs for sequential and random read and
write tasks performed on a single LEM. Note that the latency is essentially the same for 1-8 parallel jobs.
Queue depth = 1 for all results shown. Lower latency is better.

0

2000000

4000000

6000000

8000000

10000000

12000000

0 5 10 15 20 25 30 35

IO
PS

Number	of	Jobs

IOPS	vs	number	of	jobs

Seq.	Read Seq.	Write Rand.	Read Rand.	Write

0

1

2

3

4

5

0 5 10 15 20 25 30 35

Av
g.
	To

ta
l	L
at
en

cy
	µ
s

Number	of	Jobs

Latency	vs	number	of	jobs

Seq.	Read Seq.	Write Rand.	Read Rand.	Write

	 	 	 	
For parallel jobs, ForsaOS is able to achieve millions of 4K-IOPS for all read and write
tasks, and many tens of GBs per sec of throughput performance without sacrificing very
low latencies. This is particularly evident in the case of sequential read operations for
128 KB blocks, where ForsaOS can achieve more than 160 GB/s of throughput in parallel
read operations while still maintaining an average latency of under 25 microseconds.

In addition, like for the single-job trials, write operation performance in ForsaOS is not
quite as exceptional as the read performance, but this is, again, due to the native, in-line
data reduction/memory amplification discussed above.

	 	 	 	

Summary

ForsaOS showed exceptional peak performance in IOPS (in millions), Bandwidth (in tens
of GB/sec), while simultaneously maintaining very low end-to-end latency (few-µs for
4KB/single or multi-thread jobs) during FIO tests for read operations, and only somewhat
decreased (by design) performance during write operations caused by the data
amplification step during LEM writes. The most remarkable result, however, is that
these high throughputs and IOPS are achieved in this system without sacrificing latency
for tasks requiring a shallow queue depth. In common enterprise practice, many
applications issue I/O in a serialized manner – so the result is even more significant. In
other words, many enterprise applications will significantly benefit from the ForsaOS
approach.

